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Abstract 

A mechanism is suggested which resolves in a natural way the doublet-triplet 

hierarchy problem of the SUSY SU(5) theory. Under this mechanism, which we call 

GIFT (“Goldstones Instead of Fine Tuning’?), the ,dopblets are the pseudogoldstone 

bosom of the (sponteneously broken) SU(6) y s mmetry of the super potential and 

remain massless unless supersymmetry is broken. However, generally they acquire 

some mass of the order of the scale at which SUSY is broken. 

The GIFT mechanism was applied to a specific case of SUSY breaking through 

SUGRA. In calculation of the effective low energy Lagrangian GIFT allows us to find 

the otherwise arbitrary parameters for the initial conditions (at the scale of grand 

‘Permanent addtea after April 5, 1957. 
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unification) for the renormalization group equations. As usual, the electroweak 

breaking is due to the Yukawa coupling of the t quark. It turns out that at fixed 

high energy parameters (the gravitino mass me/r and the parameter A), the correct 

breaking occurs only in a narrow range of the values of the t quark mass. There 

exists an absolute upper limit for its mass mf < 52 GeV. 

Of the two massless in the limit of the exact SUSY Higgs fields, one acquires the 

mass 2m3/z while the second gets its msss only due to radiative corrections, this 

mass being calculable and likely to be near 2.2 GeV. All other masses are also Sxed 

but unknown numerically since the values of high energy parameters are unknown. 

At the end of the paper, we consider a slightly different mechanism of symmetry 

breaking, a-16 Coleman-Weinberg type. 
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I. Introduction 

Any theory of grand unification encounters the well-known “hierarchy problem,” 

namely, the problem of the existence of at least two msss scales which differ by many 

orders of magnitude. For the SU(5) theory, the masses of the colorless weak Higgs 

doublet and the color triplet (weak singlet) being comprised in a single SU(5) 

pentaplet should differ by 13-14 orders of magnitude since the exchange of the 

triplet leads to proton decay while the doublet is, in fact, the usual Glsshow- 

Salam-Weinberg weak doublet. The most severe part of this problem is readily 

resolved in a supersymmetric version of grand unification: the radiative corrections 

do not spoil hierarchies once built into the tree approximation [l-3]. Nevertheless, 

one usually achieves the desired hierarchy by a certain fine tuning of the parameters 

of the free Lagrangian. 

Consider, for example, the minimal SUSY SU(5) theory. Thii theory contains 

the Higgs fields, 24 - plet a, 5. - plet Er and 5’ - plet Hr, which are the scalar 

components of the chiral superfields &,fir, fir. The most general form of the super- 

potential for thii theory is 

w = gf spa* + ispa + f (i?#q + m (&irJ . 

From this, one immediately obtains that the Higgs potential is equal to 

v = SplM@ + .w - +B2 + f&x&/~ 

+ a; (m + f@) (m + f@+) Hz + H: (m + fO+) (m + f@) H, 

The supersymmetric miniium of V(V = 0) 

, <H,>=<Hz>=O 

0.1) 

(1.2) 

(1.3) 

corresponds to the SU(5) + SU(3) x SU(2) x U(1) breaking. Then it follows from 

(1.1) that the mssses of HI and Hs are m + f < Q >, i.e., the triplet msss is 
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m + 2fM/X, while for the doublet it is m - 3fM/X. Thus, to have the massless or 

almost massless doublets, one should impose the relation 

3fM m=-. 0.4) 
A 

As it was already mentioned, this equation would not be destroyed by radiative 

corrections. However, the relation (1.4) itself appears to be very artificial. 

Several attempts have been made to explain the doublet-triplet hierarchy in a 

natural way. In ref. [4], thii hierarchy is caused by the group structure of the Higgs 

sector (“missing partner mechanism”). The price for this is that a Higga content of 

the theory is to be quite complicated. In ref. [S], it is the “slidiig singlet mechanism” 

[6] that provides the mass hierarchy. This mechanism has been criticized, however, 

for being unstable for SUSY breaking in hidden sector at w 1On’ GeV[7]. 

A rather simple way has been suggested in refs. (S-91. However, it includes 

either explicit [Q] or more implicit [S] fine tuning. In the implicit form, it is, in fact, 

the assumed equality of the coupling constants of singlet and 24- plet Higgs fields. 

Thii equality is not maintained by any symmetry and presents a sort of Sne tuning. 

If not for supersymmetry, it would have been destroyed by radiative corrections. 

In the papers[lO], the local SU(6) gr ou p is considered. This theory again has a 

very complicated Higgs sector. 

At last, in ref. [ll], the Es group is diicussed in connection with the superstring 

models. 

We shall confine ourselves by the simplest SU(5) supersymmetric theory with 

the miniial Higgs content. A very simple mechanism will be proposed which au- 

tomatically guarantees the masslessness of the doublets in the scale of grand uni- 

fication mass M while the triplets would get’ the-mass of the order of M. This is 

achieved by constructing a model ln which the doublets appear to be pseudogold- 

stone bosons of a certain broken global symmetry of the superpotential, which is not 

the symmetry of a whole theory. More accurately, thii is one of the doublets which 

turns out to be a genuine pseudogoldstone boson while the second remains massless 

ss a superpartner of the 6rst one. When the explicit breaking of supersymmetry 

is taken into account, which we do by means of supergravity 1121, the first doublet 

remains massless. The reason is that the additional terms in the Lagrangian are 
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connected with supergravity and they obey the assumed global symmetry. Thus, 

the spectrum still contains a genuine paeudogoldstone boson. The second Higgs 

acquires a mass of order of ma/r, the gravitino mass. At last, when the gauge and 

Yukawa couplings are taken into account, the first doublet also acquires some mass 

since these couplings do not possess the global symmetry in question. Thus, the 

mass of the lightest Higga boson, as well as the breakdown of the standard group 

SU(3). x sum x U(1) is due to radiative corrections. 

Obviously the described scenario consists of two different parts: &St, it relates 

to the pure supersymmetric theory and provides a strict masslessness for the dou- 

blets. This mechanism seems to be of rather general character, we call it “GIFT,” 

YGoldstones Instead of Fine Tuning.” The second part is connected with the ex- 

plicit form of SUSY breaking; it allows to develop the effective low energy theory 

and to obtain some predictions for experiment. This consideration is similar to that 

of refs [13-181. Actually, with the help of the GIFT, we are able to calculate the 

values of some constants of the effective low energy Lagrangian which are usually 

assumed to be the arbitrary phenomenological constants. It appears, ss in [13-181, 

that the existence of the t quark is essential for the breaking of the electroweak 

group. The mass of the t quark is about 40-50 GeV (the upper bound is 52 GeV), 

and its exact value depends on the only unknown numerical parameter A depending 

on the properties of the hidden sector of supergravity. An interesting feature of the 

solution is that at 5xed A, the Yukawa coupling of the t quark, and, consequently, 

its mass, is almost fixed, but varies in a range of the order of 50-200 MeV. Even- 

tually, we calculate the manses of all the particles in the theory including the most 

interesting mass of the lightest Higgs boson. That one turns out to be 2.25 GeV. 

The paper ls organized as follows. In Section II, the GIFT mechanism is de- 

scribed in the context of the simplest super-symmetric SU(5) theory. In Section 

III, we formulate a consistent low energy model by the assumption that the SUSY 

breaking takes place through the supergravity. In Section IV, we calculate the 

renormalization of the parameters of the effective low energy Lagrangian, consider 

a question of electroweak breaking and estimate the masses of the particles. In 

Section V, we consider a slightly different mechanism of the electroweak symmetry 

breaking, a-16 Coleman and Weinberg. Lastly, in Section VI, we summarize the 

main results of the paper. Some results described in the first part of this paper 

have already been published [19]. 
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II. Solution of the Hierarchy Problem 

The simplest possible content of the Higgs fields for the SU(5) SUSY GUT is 

two 8’s, HI - 5 and Hz - r, and one 24-plet, @ - 24. All these fields are the scalar 

components of the corresponding chiral fields which we denote i?i, i?r, 6. Let us 

add to these fields a singlet SU(5) chiral field 4. The 35 fields altogether can be 

comprised in a single adjoint representation of some SU(6) group. If 2 - 35 of the 

SU(6), then the decomposition of 5 in kr,kz, 3 and 4 is: 

e= 3 ~,, + 6.$) ( 13 ,, ” 30 

WI 

where the “hypercharge” SU(6) matrix Yss = [-$, -&a * * ~?jij],., is normalized to 

unity SpY3: = 1. 

Suppose now that the Higga sector of the theory possesses a higher symmetry 

as compared to the gauged SU(5), namely, the SU(6) global symmetry. Then, the 

superpotential depends only on one field, 5, and has the simplest form 

W = ;MSpkz + +p$ P-4 

In terms of the SU(5) fields that means, of course, some relations between otherwise 

independent coe5cients in the superpotential. One easily gets from (2.2): 

- - ; 
/- 

$xP + -& (SW) 4 - 2/3wu . 

A superpotential of the type of (2.2) for the general case of the SU(n) theory 

(2 - (n’ - 1)) leads to the potential V: 

V = SplMC + XC* - ;SpCzIz 

where [MC + . ..I’ implies the product of the matrix (MC; + X (,?I*); - 6;iSpC’) 

and its hermition conjugated. 
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There is a set of degenerated supersymmetric vacua of zero energy corresponding 

to the symmetry breakdown 

W(n) -+ SU(m)xSU(n - m)xU(l), (2.5) 

(m = 1 , . ..YL - 1). The vacuum expectation values (v.e.v.‘s) < C > for these vacua 

are 

-CC>= 
Y 

n--m 

Y 

M n-m M -m 
’ ==x 2m-n9Y=x .Jm-* (233) 

Any of these zero energy states can be chosen as a real physical ground state. 

Suppose that for the SU(6) symmetric potential the ground state preserves the 

SU(4) x SU(2) x U(1) symmetry, i.e., 

Au 
<c>y (2.7) 

As follows from the decomposition (2.1) in terms of the SU(5) classification, 
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this v.e.v. means that 

M 6 
<+>=-- 

J x 5’ 

i 

615 

615 

615 

-Q/5 

-915 

(2.8) 

The gauged SU(5) symmetry is broken to the SU(3) x SU(2) x U(l), ss is 

necessary. On the other hand, one sees from (2.7) that there remains an additional 

symmetry between color and the SU(5) singlet 4. The number of broken generators 

is altogether equal to 35 - (15 + 3 + 1) = 16. This leads to 16 Goldstone bosons 

12 of which are eaten up by the Higgs mechanism and provide the mssses for X 

and Y gauge bosons of the SU(5). The remaining four Goldstones are SU(2) weak 

doublets. One can see this from the structure of < C >. These Goldstones are 

attached to those broken generators of the SU(6) which connect the SU(5) singlet 

to the SU(2) doublet. Thus, at least one massless doublet Higgs boson is expected 

(four real degrees of freedom). However, the supersymmetry ensures that both 

doublet fields, which are comprised in Hi and Hs, appear to be msssless. 

To understand this, one can imagine for a moment that the SU(6) symmetry 

is gauged. Then, with the real < C > and the pure imaginary generators in the 

adjoining representation 35, only the hermition part of C, that is C + C+, could mix 

with the gauge bosons. The hermition field C + C+ contains Hi + Hz, the doublet 

part of which is, therefore, a genuine Goldstone boson. However, the msss of the 

doublet part of Hr - I?: also vanishes because of supersymmetry. This is, in fact, 

nothing but the degeneration of two real scalar physical degrees of freedom of any 

chiral field. 

These group theoretical arguments can be varified in a straightforward way. For 

this, one should make a substitution 

0=<4>+B’, J=<d>+.J (2.9) 

and to rewrite the superpotential (2.3) in terms of &’ and a. The validity of such 

a procedure is bssed on the fact that supersymmetry is not broken. No F terms 

have nonvanishmg vacuum expectation values, so we can consider < Q ># 0 and 
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< 4 ># 0 as 8 superfield < & ># 0 and < 3 ># 0 with 8 single nonvanishing 

A-component. Subtracting < & > end < 4 > from & and 4 we get (2.9). Would 

the supersymmetry not have been preserved, one could not use the superpotential 

and would be forced to calculate the potential V itself. 

From (2.9) and (2.3), we obtain 

W = i!fam$ + :MSg (A* - d’) + SMp + 
J 

iMSpA$ 

+ 

m =M( :I:),&= (?),Spii=-Spb. (2.10) 

Here we use psrtly the notations (for m and 4’) where we explicitly separated 

triplet color snd weak doublet indices. We see that the doublets from &1 and $I2 

remain messless. Using (2.10) one can describe the whole spectrum of the particles. 

Apart from massleas doublets one has: 

1. Massive color triplet SC&Z superfields of the maSs 3M entering fil and &r. 

2. Twelve massive gsuge bosons of the SU(5) (X and Y bosons), in which the 

corresponding nondisgonal (@’ + Of+) dog. = B + C+ Goldstone bosons Bse 

absorbed. The m8ss of these boeona ls Mx = My = (3/fi)g(M/X). The 

scalar boaons B - C+ acquire their m8as from the D terms: 

D: = $ (@+t’O)* = ;gzsp [o’, 41’ + (4 =< 4 > +a’) +. (2.11) 

$P[< Q) >,4’-4’+] = ;gz(!&(B- C’) (B’ _ C) . 

These bosone are degenerated with X and Y gauge bosons and give altogether 

12 x 3 + 6 x 2~ = 48 boson degrees of freedom. There are also 12 massive 

Dirac fermions (12 x 4 = 48 fermionic degrees of freedom). The lefthanded 

components of these fermions are actuslly the chiral fields b and ? while 

their righthanded components are the X and Y calibrinos. 
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3. There remain 1 and b superfields. The traceless part of i transforms as (8,l) 

of SU(3), x sum while the traceless part of 2, is (1,3). Their maSs is 3M. 

There ia also 8 &r, field in 1 and 2, connected to the weak hypercharge 

(2.12) 

The irr field is mixed with the SU(5) singlet 3. Two mixtures 

(2.13) 

have the m8ssea 3M and M respectively. 

III. Supergravity and the Lagrangian of the Light Fields 

To formulate 8 consistent low-energy theory, one should point out the mechanism 

of the supersymmetry breaking. We assume that 8 soft SUSY breaking takes place 

through the supergravity which is probably the most popular version nowadays. 

Then, instead of the potential (2.4) (for n=6), one hsa [20]: 

V = SplMC + XC* - ;SpC’ + WZ~,~C+I~ 

+ (A - 3)m3,#p (;MC’ + ;MC+’ + ;XE3 + ;XE+3) , (3.1) 

where ma/, is the grsvitino rn8as (rn3j1 - l~GeV), and A is the numeric81 constant 
depending on the hidden sector of the theory (generally A - 1). 
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Since m3,2 <c: M, one cs.n look for the minimum of V in the form of eq. (2.7): 

<E>=z. 

1 
1 

1 

1 

-2 

-2 

, 

and find z as a perturbation series in m,j,JM. One gets 

2=1+ ?32+(A-3)2!E+o 3 . 
( ) 

(3.2) 

To obtain the m8sses of the scalar doublet fields HI and Hz, (since we are no 

more interested in triplets, from now on we shall call doublet fields by the same 

notations, HI and Hz, 8s we have previously used for 5’s) one should turn to the 

potential arising from the superpotential (2.3). This is becsuse, &s it WBS explained 

before, in the case when supersymmetry is broken, we cannot use the superpotential 

any more. We shall not write down 8 rather cumbersome expression which comes 

out when the substitution C =< E > +C’ (4 =< 4 > +4’,4 =< I$ > +#) in 8 

full potential, including HI and Hz is done. Let us only give the final result making 

8 few short comments. There are two sourcee for the mbss of the scalars HI, Hz: 

(8) nonequality of z to unity, and (b) the direct “supergravity contribution” of the 

type of (3.1). The straightforward calculation shows that these contributions cancel 

each other in the leading order w (m&M) = Mslam for the (mass)’ for HI and 

Hz. This is known to be 8 general property 1211. In the next order, one can obtain 

the following m8ss terms: 

V = 2m$, (EI:& + H:H~ - HAHN - H;H;) 

= 4m$, ( HT>H2) ( “GHz) . 

So the field (R; - H$)/fi 8cquiree the m8ss 2m3/2 while the field (HI + H$)/\/z 
remains massless. Thi is not surprising since (HI + H.$)/fi is 8 genuine Goldstone 

boeon. Curiously, the mass of (HI - H$)/fi turns out to be independent on the 
parameter A. 
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Another maSs term, arising from SUSY breaking, is the mass of spinor compo- 
* 

nents of HI end Hz, i.e., the Higgsinos masses. One an easily see that this mass 

appears in the first order in m3j2/M for z - 1. A simple calculation gives the result 

for this mess term 

- rn3,2 (R~Ci!f*) + kc. , (3.5) 

where HI and Hs are the Higgsinos lefthanded chiral fields and C is the charge 

conjugation matrix. 

Compare theee results with the ‘phenomenological” low energy L8grangia.n of 

the most general form [21]. Evidently, the superpotential can only be written in 

the form 

w = -po (k&J . (3.6) 

Then with the SUSY breaking through SUGRA, the Higgs potential of the scalar 

fields is 

vb%,Hs) = (pi + “‘b) cH?Hl + HZHz) - Bm3ppo (HAHN + H;H;) 

+ $(A;+H~-H:H~)‘+~(H~~H~+H~(-~‘)H,)’. (3.7) 

The last terma 8re the D terms, and B is an unknown parameter. Being compared 

to the eq. (3.4), this gives 

b=m3p ,B=2. (3.8) 

The value ~0 = ma/a is also in an agreement with the Higgsinos ma (3.5). Thus, 

the GIFT mechanism allows us to calculate the phenomenological parameters of the 

low energy Lsgrangian. 

IV. Renormalization and Electroweak Symmetry Breaking 

We CM now analyze the question of the electroweak breaking. Leaving in (3.7) 

only 

<Hy>=v,/\/z ,<Ig>=v+h (4.1) 

we get 

(4.2) 
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4 = PL: = rt + m$, ,113 - ’ - Brn3/+0 , QZ = g2 f g” 

or, with the relations (3.8) taken into account 

pf = pi = pi = 2m$, . (4.3) 

In general cases when 9: # /J: # &, some conditions are necessary to have 

symmetry breaking. These conditions are 

$: +/a 2 I.4 2 &iz . 

The first of these inequalities is necessary to ensure stability at u1 = ~2. If it is 

not satisfied, V -+ --m at [VI] = Iv*] --t co. The second condition makes the point 

u1 = vs = 0 to be unstable since in this point I] LW/C%&J~ I/< 0. 

The eq. (4.3) shows that we are st the edge of symmetry breaking. However, 

in the V8ha (4.3), the effects of renormalization are neglected. Since we get the 

conditions (4.3) from the grand unification theory, it is reasonable to assume that 

this form is valid at the scale of order of grand unification 111119s (or even Plank 

mass). Then, at the energies - 100 GeV p: # fii: # p$ bec8use of renormalization. 

This line of reasoning is quite popular now [13-181. In calculation of renormalization 

effects, we shall follow closely refs. [17-181. 

Suppose first that we take into account only the gauge couplings of the 

SU(3), x sum x U(1) neglecting the Yukawa couplings. Then the relation p; = 

pi is preserved while r: # pi = pi. The conditions (4.4) are not satisfied and the 

symmetry breaLlng is impossible. That me- thst one should turn to the Yukawa 

couplings which distinguish HI and Hz and, therefore, result in r! # pi. Of these 

couplings, we leave only the Yukawa coupling df t ~qtitik and t quarkino of the form 

LY = h [L (ih&)],_,~,, = h3 (iqiL - iI~L)p-tarm . (4.5) 

The renormslizatitin group equations for thii caSe were first obtained in ref. [13]. 



-13- FERMILAB-Pub-87144-T 

In the notations of ref. [18], we get 

P: (co) = PiQ2 (&la) + +,a &I = 41, [d (6) + al (Q] , 

P:(b) = i&l2 (&I) + +,a2 Vd = 412 [qi (f%) + =2 (-Q] , (4.6) 

1.4 ((0) = m3ltpoB. q (Lo) * (9) =2m$2[q(&J-+] ,&=log* . 

Using the eqs. of the Appendix of [18], we CM 6nd the functions q(&),a,(&), 

as(&), g(&).2 For simplicity, we sssume that the calibrino mess Ml/2 = O(=y = 

= M&rn3,2 = 0) which is, though not literally acceptable phenomenologically, 

corresponding to “minimal SUGRA coupling”. Then we obtain for q(b): 

sts 
q(b) = j:: ;;;I f * id]‘,’ ’ 

Xj(&) = l+b,~~Og~,!$!=$?!=~~~&~ (4.7) 
W 

b1 = ll,~=l,b3=-3,MouT”~.10’6GeV,~o--84. 

The coupling constants gs(O),gr(O),gr(O) of the SU(3) x SU(2) x U(1) in (4.7) 

rue taken at grrmd unification scale MCUT. The function D(L) governs the evalua- 

tion of the Yukawa coupling constant ht(L). The connection between h,(b), which 

determines the t quark mass (rnt = h,(.f.e)ur/& and he(O), the coupling at MCoT 

is given by: 

1-w* ’ 

Et411 = =P /,” [$ (4 + 3011V) + +: (O] y$ 3 (4.8) 

F(b) = pod(. 

Since the gauge couplings are known while h,(b) is not a-priori 6xed (since we 

do not know the t quark mass) we put in the numerical values of gi, gr, gs and obtain 

‘Note that p1 and pa are mixed up with each other in this Appendix. 
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[18]: 

E(b)-13 , F(4) II 290 ,0(&J = 
1 

1 - 0.848 [/at (&,)]’ ’ 

(4.9) 

For the function q(b), we find: 

q(b) = 1.28 (1 - 0.85h:)r” cx 1.28 (1 - 0.21h: - O.OSSh:) , (4.10) 

where ht = h,(b) = firnt/ui. In the last equation (4.10), we made an expansion 

in h: since we shall see later that hi < 1. 

NOW we should calculate ai(&),ar(&) and &(&) of eq. (4.6). The renormai- 

ization of ar(&) is determined only by the Yukawa couplings of the bottom quark 

which has been neglected. Hence: 

~22(430)=1. (4.11) 

As to the functions al(&) and h(b), they unfortunately depend also on the 

parameter A introduced in the previous section. A is determined by the v.e.v.‘s 

of the hidden sector and is the coefacient in the cubic term of the potential: 

AmS,2[sca.larfiel&]S. One can 8nd for al(&): 

~~((0) = 1 - 0.424(A2 + 3)h: + 0.360A2hf . (4.12) 

- 
At last for B(f+)/B(B = 2), one has 

i (4) /B = 1 + 0212Ali; . (4.13) 

From the eqs. (4.10)-(4.13), we get the renormalized values of d,d and pi: 

p: = ml,, [2.64 - (1.97 + 0.42A2) hf + (0.36A2 - 0.15) h:] , 

2 - 
I.42 - rni,, [2.64 - 0.70h: - O.lSh:] , (4.14) 

2 - 
h - m$2 [2.56 + 0.54 (A - 1) hi - (0.17 + 0.115A) hi] . 
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As it was already mentioned, without the Yukawa coupling (ht = O)pT = gi # pi. 

An instructive feature of the solution (4.14) is that pg is almost equal to pf = pi, 

though the overall renormalization is not so small. That means that the terms 

- h:, hf should also be small, h: << 1. 

In order to satisfy the conditions (4.4), p: should lay between two very close 

values (p! + pi)/2 and &z. Indeed, though pi differs from pi in order O(hi) 

the difference between (p: + pi)/2 and m is of the next order, i.e., O(h:). This 

means that there exists a narrow range of hf, with the width - hf, in which the 

condition (4.4) is satisfled. The maximumvalue of hi is determined by the equation 

This gives approximately 

hLz = h 1 + 0.675:+ 0.263A2 + L 
0.25 + 1.44A + 2.25A2 

1000 (1 + 0.6754 + 0.263A2)3 ’ 
(4.16) 

The minimal value hk,, is given by the condition 

r:=&Gi. 
We can expand the difference between hk, and hL,, in h: and obtain: 

hk,, - hk,, = 
(0.31 + 0.10A2)2 

1 + 0.67544 + 0.263Ar hL’ ’ 

(4.17) 

(4.18) 

These limits for ht determine the maximum and minimum value of the t quark 

mass. Since p: = d, the symmetry breaking takes place at vi = ~2. Hence: 

mt = ‘2 - = F ,v = (C,P@-‘/~ = 246 GeV . 

Consider two numerical examples. At A = 0, hk, rr 0.10, hk,, - hLi, 2: 

O.OOl,m;MI = 39.36GeV,m;M’ - rnFn cz 0.2GeV; at A = 3, hf,,,, e 0.02,mr’ = 

16.82GeV, rn;UI - m;li” = 0.04GeV. It is interesting that there exists an absolute 

upper limit for the t quark mass (corresponding to A = -1.28) Thii limit is 

mt < 51.7GeV . (4.20) 

However, if A is treated as a free parameter, there is no lower limit for mt. 
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The general solution of the equation dV/doi = 0 with V determined by (4.2) is 

(for vi < 9~2): 

ml, = 
I 

. (4.21) 

We see that for our case 01 = ~2, while for u(v2 = uf + u:) one can obtain from 

(4.21) the expression in which h -= and hd, M defined by eqs. (4.15)-(4.18) are 
used: 

m:=$f=(p:+&) [\J=-1] . (4.22) 

When he varies from hti,, to h mol,urunsfromu=Otou=oo. 

The mass of the pseudoscalar neutral particle which is, in fact (vilm&’ - 

urlm@), generally is 

rni=jb:+p: . (4.23) 

We have from the eq. (4.14): 

rni u 5.28m$, . 

The mass of the charged Higgs equals m&+ = rni + m&. 

For the neutral scalar particles, the general expression is 

(4.24) 

dn,, = i (rng + rni) f i\/(rn$ + rni)’ - 4mim+os228 , (4.25) 

where sin2U = 2p:/(p: + pi). 

Since co528 e 0, the heavier scalar is almost degenerated with the charged Higgs, 

while for the light scalar, one has: 

rn: = 44 cos220 
L mg+rni 

(4.26) 

This is the mass of the Higgs particle, (Hi + R:), which is exactly msssless in 

the limit pi = pi = pg. The cos22B is proportional to fi: + pi - 2~:; this, in turn, is 
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proportional to hf,,,, - hf. The latter quantity could be expressed from eq. (4.22) 

as 

(Caz - ‘&in) 

= ( m;‘mb)l o’31 + OJA2 1 + 0.675A + 0.263A 
ht,,, (4.27) 

so that eventually one obtains 

m%= 
m$rnzrn: 

(m$ + mi)3’2 4 
(0.96 + 0.31A2) . (4.28) 

Since [m$/(mi + mi)3/2] < 1 we have, using (4.16), 

1 
ms Imz- 

0.96 + 0.31A2 
L 40 1 + 0.675A + 0.263A2 

e 2 = 2.25GeV . (4.29) 

If mp > mz then msL = 2.25GeV. Of course, actually this limit is almost saturated 

at rns Z rni. So rns L cx 2.25GeV if ms/z Z 40 - 45GeV. (See eq. (4.24)). 

Now consider the msases of the superpartners of the W and 2 mixed with the 

Higgsinos. For the charged Higgsino-Winos mass, one has at vi = ur = v/d two 

massive Dirac spinors with the masses: 

m$,, (I?) = $t2 + 7 * $,d~~ , 

where ~1’ = m3,2q(&) = 1.28 m3i2 (see eq. (4.10)). If ~1’ ZZ= mw (i.e., mz,2 > 

70 - 80GeV) the lighter I?‘L has the msss m($‘L) = m&/p’. Since there is the 

experimental limit m(I@L) > 23GeV, one has m3,2 < 220GeV. 

For the neutral Higgsino-zinos and photino; there are altogether four Majarano 

spinors. Their masses are 

mf.2 (2) = $f2 + $f f $dm , 
m3 (2) = p’ , m4 (5) = 0 . (4.31) 

The msssiessness of the photino is, of course, a result of the simplification made 

by the assumption of the “minimal” character of SUGRA. 
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At last, it is interesting to estimate the masses of the superpartners for quarks 

and leptons. Within the accuracy O(h:), all these masses, but the i-quarkino, are 

equal to m3,2 (the renormalization corrections are of the order of - h: = 4m:/v2). 

For i-quarkino, it is easy to get: 

ml;, #, = d,, f (A + 1) ms/zmt. (4.32) 

This comes out ss a result of the mixing of lefthanded and righthanded quarkinos 

which are the superpartners of tn and tR quarks. 

V. The Coleman-Weinberg Type of Symmetry Breaking 

The renormalization effects destroy the symmetry fi: = /J: = pi which is due 

to the GIFT mechanism. The “large-scale” renormalization, however necessary in 

a real world it may be, seems to lie somewhat outside of the scope of the model 

considered. From a purely theoretical point of view one can ask a question: What 

would happen to the theory with the Higgs potential if no large-scale renormaliza- 

tion takes place? That question seems to be at least self-consistent for the model 

described. 

The answer, of course, is that at &St place, the Coleman-Weinberg corrections 

to the potential should be calculated. Indeed, at the tree level, the potential (4.2) 

in the lit fi! = I*: = p: = 2m2 has the form: 

V, = m’ (~1 - ~2)~ + $ (vf - u2 2)2 = 2~’ (m2+ g(l) , 

Vl - v2 (2&y) = ~ (5.1) 

(We change the notation ms,z + m). The minimum of Vo corresponds to < n >= 

O(ur = ur), but does not determin e < [ >. This quantity should be found from one 

loop Coleman-Weinberg potential. As is well known, this one is given by: 

64r2V~ (&q) = C(-l)‘mi log~mf , 
, 

where mi are the mssses of all the particles in the external field (6,111 and (-1) 

stands for all the fermions. 
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It is easy to see that the minimum at < n >= 0 remains valid for V, + V, + VI. 

(That is because VI depends actually on n2). Thus, one has to calculate VI at n = 0, 

i.e., at vi = vr, < = u. 

Let us start by neglecting the Yukawa coupling so that only the contribution of 

Hr, Hr, W, 2 and their fermion superpartners are taken into account in (5.2). One 

obtains 

2 2 
- 4 f++~m2+~m\l;nlfg2v? 

1 
lo!? 

q + fm2 + irndrn2 + g2uz 
A2 

2 2 
- 4 

( 
f++~rn2-~rn&F+G log 

) 

q + +m2 - ~mJG?TjV 
A2 

+ +I * (5.3) 

Here fust terms are the contributions from H+ and W, while the negative terms 

correspond to Higgsinc-wino (Cf. eq. (4.30). The terms with g + ji are the 

contributions of the neutral particles. 

The potential (5.3) has no cutoff dependence apart from an unessential additive 

constant (42m410gA2). This partly comes ss a surprise. The cancellation of the 

“‘logA terms is understandable. At m = 0 and vr = “2, the supersymmetry is 

actually not violated so that the masses of the bosons in an external 6xed u is still 

equal to the masses of the fermions. As to the cancellation of the m2u210gA2 terms, 

it looks rather ‘accidental”. For example, we shall see below that when t quark and 

i quarkmo contribution is included, there is no such cancellation. 

Anyhow, the expression (5.3) csn be rewritten in ‘a form not containing A. Omit- 

ting an additive constant, one gets 

f(z) = 281092 + 2 (z + 4)‘logT - 4 (22 + 1) m log ’ + 22 +,f= . 

This z dependence gives the curvature of the potential along the valley vt = ~2. 

Unfortunately f(z) has no minimum, but maximum at z = 2.2 while at 
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z -+ oaf(z) N -82 --t -oo. So instead of self-consistent symmetry breaking we have 

an instability at large u. The situation is immediately improved if the contribution 

of t-quark-quarkino is added to (5.3). This one is 

(5.5) 

where ht is the Yukawa constant and A is the same parameter ss before. The 

asymptotics of this expression at large u is 

64n2V(‘) N 1 3m2hfv2 [(A + 1)’ + 21 log u2 , 

while the ssymptotics of VI (5.4) is 

647PV~ --2m2(g2+ig2)v2, 

which means that at v large enough, the sum Vi’) + VI is positive. There is a 

minimum in the function V,c’)+V,, and if one put v = (GF&)-‘/’ in this minimum, 

ss required, one can calculate the Higgs mass which is independent on A. This is, 

of course, the well known Coleman-Weinberg mechanism. At htu/2 > m one finds 

miL= (~‘v~~~v1’)~~~~d~=&(~)[(A+l)2+2] . (5.8) 

This is different from the expression (4.28) for this mass of the previous section. 

VI. Conclusion 

Let us summarize briefly the main results of the paper. First, we suggested 

mechanism which explains naturally the mssslessness of the doublets comprised 
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in 5’s of the SU(5) SUSY theory. The reason for this is that the doublets are the 

pseudogoldstone bosons of the global broken SU(6) symmetry of the superpotential. 

Though this symmetry is not a symmetry of the whole theory, doublets neverthe- 

less remain msssless until supersymmetry is broken. When it is broken, doublets 

acquire, in general, some msss of order of the scale of SUSY breaking. 

This general ‘GIFT” mechanism was applied to a specific case of SUSY breaking 

through supergravity. For this case, even after SUSY breaking, one of the doublets 

remains massless at the tree level since it remains to be the pseudogoldstone boson 

for the tree potential. However, with the supersymmetry broken, it acquires some 

mass due to radiative corrections. We considered first in details when this happens 

owing to the renormalization of the parameters of low energy potential. We showed 

that at fixed values of the parameters given by SUGRA (m3i2, the gravitino mass, 

and A, which is the parameter connected to the v.e.v.‘s of the hidden sector of the 

theory) only a narrow interval in masses of t quark gives the correct electroweak 

symmetry breaking. There is an absolute upper liiit for the mass oft quark which 

is mt < 52GeV. The mass of the lightest scaler particle is likely to be near 2.2 GeV. 

All other masses are also fixed, but unknown numerically since the values of the 

parameters ms/r, A are unknown. 

In the last section of the paper, we considered a slightly different mechanism of 

symmetry breaking, of the Coleman-Weinbergtype. If ‘large-scale” renormalization 

of the parameters of the Higgs potential takes place, then the Coleman-Weinberg 

corrections are only of few percents and can safely be neglected. However, if the 

symmetry, which is due to the GIFT mechanism, persists at rather low energies, 

then the Coleman-Weinberg type treatment is necessary. It turns out that here 

again the Yukawa coupling of t quark is essential to provide the correct symmetry 

breaking. The mass of the lightest scalar boson is calculatable, but this time it is 

dependent on ms,z and A. 

In conclusion, we notice that the GIFT mechanism itself seems to be of much 

more general character than the specific consideration connected to SUGRA SUSY 

breaking. 
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